Contents

Part I Invited Speaker

1 Computational Intelligence Based Regulation of the DC Bus in the On-grid Photovoltaic System ... 3
 Mauridhi Hery Purnomo, Iwan Setiawan and Ardyono Priyadi

2 Virtual Prototyping of a Compliant Spindle for Robotic Deburring .. 17
 Giovanni Berselli, Marcello Pellicciari, Gabriele Bigi and Angelo O. Andrisano

3 A Concept of Multi Rough Sets Defined on Multi-contextual Information Systems ... 31
 Rolly Intan

Part II Technology Innovation in Robotics Image Recognition and Computational Intelligence Applications

4 Coordinates Modelling of the Discrete Hexapod Manipulator via Artificial Intelligence .. 47
 Felix Pasila and Roche Alimin

5 An Object Recognition in Video Image Using Computer Vision .. 55
 Sang-gu Kim, Seung-hoon Kang, Joung Gyu Lee and Hoon Jae Lee

6 Comparative Study on Mammogram Image Enhancement Methods According to the Determinant of Radiography Image Quality .. 65
 Erna Alimudin, Hanung Adi Nugroho and Teguh Bharata Adji
7 Clustering and Principal Feature Selection Impact for Internet Traffic Classification Using K-NN
Trianggoro Wiradinata and P. Adi Suryaputra

8 Altitude Lock Capability Benchmarking: Type 2 Fuzzy, Type 1 Fuzzy, and Fuzzy-PID with Extreme Altitude Change as a Disturbance
Hendi Wicaksono, Yohanes Gunawan, Cornelius Kristanto and Leonardie Haryanto

9 Indonesian Dynamic Sign Language Recognition at Complex Background with 2D Convolutional Neural Networks
Nehemia Sugianto and Elizabeth Irenne Yuwono

10 Image-Based Distance Change Identification by Segment Correlation
Nemuel Daniel Pah

11 Situation Awareness Assessment Mechanism for a Telepresence Robot
Petrus Santoso and Handry Khoswanto

12 Relevant Features for Classification of Digital Mammogram Images
Erna Alimudin, Hanung Adi Nugroho and Teguh Bharata Adji

13 Multi-objective Using NSGA-2 for Enhancing the Consistency-Matrix
Abba Suganda Girsang, Sfenrianto and Jarot S. Suroso

14 Optimization of AI Tactic in Action-RPG Game
Kristo Radion Purba

15 Direction and Semantic Features for Handwritten Balinese Character Recognition System
Luh Putu Ayu Prapitasari and Komang Budiarta

16 Energy Decomposition Model Using Takagi-Sugeno Neuro Fuzzy
Yusak Tanoto and Felix Pasila

17 Odometry Algorithm with Obstacle Avoidance on Mobile Robot Navigation
Handry Khoswanto, Petrus Santoso and Resmana Lim
Part III Technology Innovation in Electrical Engineering, Electric Vehicle and Energy Management

18 Vision-Based Human Position Estimation and Following Using an Unmanned Hexarotor Helicopter 165 Jung Hyun Lee and Taeseok Jin

19 The Role of Renewable Energy: Sumba Iconic Island, an Implementation of 100 Percent Renewable Energy by 2020 173 Abraham Lomi

20 Electromechanical Characterization of Bucky Gel Actuator Based on Polymer Composite PCL-PU-CNT for Artificial Muscle ... 185 Yudan Whulanza, Andika Praditya Hadiputra, Felix Pasila and Sugeng Supriadi

21 A Single-Phase Twin-Buck Inverter 193 Hanny H. Tumbelaka

22 Performance Comparison of Intelligent Control of Maximum Power Point Tracking in Photovoltaic System .. 203 Daniel Martomanggolo Wonoahadidojo

23 Vehicle Security and Management System on GPS Assisted Vehicle Using Geofence and Google Map 215 Lanny Agustine, Egber Pangaliela and Hartono Pranjoto

24 Security and Stability Improvement of Power System Due to Interconnection of DG to the Grid 227 Ni Putu Agustini, Lauhil Mahfudz Hayusman, Taufik Hidayat and I. Made Wartana

25 Solar Simulator Using Halogen Lamp for PV Research 239 Aryuanto Soetedjo, Yusuf Ismail Nakhoda, Abraham Lomi and Teguh Adi Suryanto

26 Artificial Bee Colony Algorithm for Optimal Power Flow on Transient Stability of Java-Bali 500 KV 247 Irriane Budi Sulistiyawati and M. Ibrahim Ashari

27 Sizing and Costs Implications of Long-Term Electricity Planning: A Case of Kupang City, Indonesia 257 Daniel Rohi and Yusak Tanoto

28 Dynamic Simulation of Wheel Drive and Suspension System in a Through-the-Road Parallel Hybrid Electric Vehicle 263 Mohamad Yamin, Cokorda P. Mahandari and Rasyid H. Sudono
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>A Reliable, Low-Cost, and Low-Power Base Platform for Energy Management System</td>
<td>Henry Hermawan, Edward Oesnawi and Albert Darmaliputra</td>
</tr>
<tr>
<td>30</td>
<td>Android Application for Distribution Switchboard Design</td>
<td>Julius Sentosa Setiadji, Kevin Budiargono and Petrus Santoso</td>
</tr>
<tr>
<td></td>
<td>Part IV Technology Innovation in Electronic, Manufacturing, Instrumentation and Material Engineering</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Adaptive Bilateral Filter for Infrared Small Target Enhancement</td>
<td>Tae Wuk Bae and Hwi Gang Kim</td>
</tr>
<tr>
<td>32</td>
<td>Innovative Tester for Underwater Locator Beacon Used in Flight/Voyage Recorder (Black Box)</td>
<td>Hartono Pranjoto and Sutoyo</td>
</tr>
<tr>
<td>33</td>
<td>2D CFD Model of Blunt NACA 0018 at High Reynolds Number for Improving Vertical Axis Turbine Performance</td>
<td>Nu Raha Bina Arina, Stephen R. Turnock and Mingyi Tan</td>
</tr>
<tr>
<td>35</td>
<td>Performance Evaluation of Welded Knitted E-Fabrics for Electrical Resistance Heating</td>
<td>Senem Kursun Bahadir, Ozgur Atalay, Fatma Kalaoglu, Savvas Vassiliadis and Stelios Potirakis</td>
</tr>
<tr>
<td>36</td>
<td>IP Based Module for Building Automation System</td>
<td>J.D. Irawan, S. Prasetio and S.A. Wibowo</td>
</tr>
<tr>
<td>37</td>
<td>Influence of CTAB and Sonication on Nickel Hydroxide Nanoparticles Synthesis by Electrolysis at High Voltage</td>
<td>Yanatra Budipramana, Suprapto, Taslim Ersam and Fredy Kurniawan</td>
</tr>
<tr>
<td>38</td>
<td>Waste Industrial Processing of Boron-Treated by Plasma Arc to Produce the Melt and Fiber Materials</td>
<td>S.L. Buyantuev, Ning Guiling, A.S. Kondratenko, Junwei Ye, E.T. Bazarsadaev, A.B. Khmelev and Shuhong Guo</td>
</tr>
<tr>
<td>39</td>
<td>Design of Arrhythmia Detection Device Based on Fingertip Pulse Sensor</td>
<td>R. Wahyu Kusuma, R. Al Aziz Abbie and Purnawarman Musa</td>
</tr>
</tbody>
</table>
Contents

40 Analysis of Fundamental Frequency and Formant Frequency for Speaker ‘Makhraj’ Pronunciation with DTW Method

Muhammad Subali, Miftah Andriansyah and Christanto Sinambela

41 Design and Fabrication of “Ha (하다)” Shape-Slot Microstrip Antenna for WLAN 2.4 GHz

Srisanto Sotyohadi, Sholeh Hadi Pramono and Moechammad Sarosa

42 Investigation of the Electric Discharge Machining on the Stability of Coal-Water Slurries

S.L. Buyantuev, A.B. Khmelev, A.S. Kondratenko and F.P. Baldynova

43 A River Water Level Monitoring System Using Android-Based Wireless Sensor Networks for a Flood Early Warning System

Riny Sulistyowati, Hari Agus Sujono and Ahmad Khamdi Musthofa

44 The Influence of Depth of Cut, Feed Rate and Step-Over on Surface Roughness of Polycarbonate Material in Subtractive Rapid Prototyping

The Jaya Suteja

45 Adaptive Cars Headlamps System with Image Processing and Lighting Angle Control

William Tandy Prasetyo, Petrus Santoso and Resmana Lim

46 Changes in the Rheological Properties and the Selection of a Mathematical Model of the Behavior of Coal-Water Slurry During Transport and Storage

S.L. Buyantuev, A.B. Khmelev and A.S. Kondratenko

47 Design of a Fetal Heartbeat Detector

Nur Sultan Salahuddin, Sri Poernomo Sari, Paulus A. Jambormias and Johan Harlan

Part V Technology Innovation in Internet of Things and Its Applications

48 Network Traffic and Security Event Collecting System

Hee-Seung Son, Jin-Heung Lee, Tae-Yong Kim and Sang-Gon Lee

49 Paper Prototyping for BatiKids: A Technique to Examine Children’s Interaction and Feedback in Designing a Game-Based Learning

Hestiasari Rante, Heidi Schelhowe and Michael Lund
50 Tracing Related Scientific Papers by a Given Seed Paper Using Parscit .. 457
Resmana Lim, Indra Ruslan, Hansin Susatya, Adi Wibowo, Andreas Handojo and Raymond Sutjiadi

51 Factors Affecting Edmodo Adoption as Online Learning Medium .. 465
Iwa Sungkono Herlambangkoro and Trianggoro Wiradinata

52 Principal Feature Selection Impact for Internet Traffic Classification Using Naïve Bayes 475
Adi Suryaputra Paramita

53 Study on the Public Sector Information (PSI) Service Model for Science and Technology Domain in South Korea .. 481
Yong Ho Lee

54 Digital Natives: Its Characteristics and Challenge to the Library Service Quality 487
Siana Halim, Felecia, Inggrid, Dian Wulandari and Demmy Kasih

55 Web-Based Design of the Regional Health Service System in Bogor Regency 495
B. Sundari, Revida Iriana and Bertilia Lina Kusrina

56 Security Handwritten Documents Using Inner Product ... 501
Syaifudin and Dian Pratiwi

57 Augmented Reality Technique for Climate Change Mitigation .. 511
Ruswandi Tahrir

58 Cyber Security for Website of Technology Policy Laboratory ... 521
Jarot S. Suroso

59 TAM-MOA Hybrid Model to Analyze the Acceptance of Smartphone for Pediatricians in Teaching Hospital in Indonesia ... 529
Oktri Mohammad Firdaus, Nanan Sekarwana, T.M.A. Ari Samadhi and Kah Hin Chai

60 Development of the Remote Instrumentation Systems Based on Embedded Web to Support Remote Laboratory ... 537
F. Yudi Limpraptono and Irmalia Suryani Faradisa

61 Enhancing University Library Services with Mobile Library Information System 545
Singgih Lukman Anggana and Stephanus Eko Wahyudi
62 Multi Level Filtering to Classify and Block Undesirable Explicit Material in Website .. 553 Mohammad Iqbal, Hifshan Riesvicky, Hasma Rasjid and Yulia Charli

63 Query Rewriting and Corpus of Semantic Similarity as Encryption Method for Documents in Indonesian Language .. 565 Detty Purnamasari, Rini Arianthy, Diana Tri Susetianingtias and Reni Diah Kusumawati

64 Securing Client-Server Application Design for Information System Inventory .. 573 Ibnu Gunawan, Djon Haryadi Setiabudi, Agustinus Noertjahyana and Yongky Hermawan

Part VI Technology Innovation in Information, Modelling and Mobile Applications

65 Analyzing Humanitarian Logistic Coordination for Disaster Relief in Indonesia .. 583 Tanti Octavia, I. Gede Agus Widyadana and Herry Christian Palit

66 Surakarta Cultural Heritage Management Based on Geographic Information Systems .. 589 Ery Dewayani and M. Viny Christanti

67 Gray Code of Generating Tree of n Permutation with m Cycles .. 599 Sulistyo Puspitodjati, Henny Widowati and Crispina Pardede

68 Android and iOS Hybrid Applications for Surabaya Public Transport Information .. 607 Djoni Haryadi Setiabudi and Lady Joanne Tjahyana

69 Games and Multimedia Implementation on Heroic Battle of Surabaya: An Android Based Mobile Device Application .. 619 Andreas Handojo, Resmana Lim, Justinus Andjarwirawan and Sandy Sunaryo

71 Design of Adventure Indonesian Folklore Game .. 639 Kartika Gunadi, Liliana and Harvey Tjahjono
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>Measuring the Usage Level of the IE Tools in SMEs Using Malcolm Baldrige Scoring System</td>
<td>I. Nyoman Sutapa, Togas W.S. Panjaitan and Jani Rahardjo</td>
<td>649</td>
</tr>
<tr>
<td>73</td>
<td>Enumeration and Generation Aspects of Tribonacci Strings</td>
<td>Maukar, Asep Juarna and Djati Kerami</td>
<td>659</td>
</tr>
<tr>
<td>74</td>
<td>A Leukocyte Detection System Using Scale Invariant Feature Transform Method</td>
<td>Lina and Budi Dharmawan</td>
<td>669</td>
</tr>
</tbody>
</table>
| 75 | The Diameter of Enhanced Extended Fibonacci Cube Interconnection Networks | Ernastuti, Mu
fi
 d Nilmada and Ravi Salim | 675 |
| 76 | Prototype Design of a Realtime Monitoring System of a Fuel Tank at a Gas Station Using an Android-Based Mobile Application | Riny Sulityowati and Bayu Bhahtra Kurnia Rafik | 685 |
Chapter 7
Clustering and Principal Feature Selection
Impact for Internet Traffic Classification
Using K-NN

Trianggoro Wiradinata and P. Adi Suryaputra

Abstract K-NN is a classification algorithm which suitable for large amounts of data and have higher accuracy for internet traffic classification, unfortunately K-NN algorithm has disadvantage in computation time because K-NN algorithm calculates the distance of all data in some dataset. This research provide alternative solution to overcome K-NN computation time, the alternative solution is to implement clustering process before the classification process. Clustering process does not require high computation time. Fuzzy C-Mean algorithm is implemented in this research. The Fuzzy C-Mean algorithm clusters the based datasets that be entered. Fuzzy C-Mean has disadvantage of clustering, that is the results are often not the same even though the input data are same, and the initial dataset that of the Fuzzy C-Mean is not optimal, to optimize the initial datasets, in this research, feature selection algorithm is used, after selecting the main feature of dataset, the output from fuzzy C-Mean become consistent. Selection of the features is a method that is expected to provide an initial dataset that is optimum for the algorithm Fuzzy C-Means. Algorithms for feature selection in this study used is Principal Component Analysis (PCA). PCA reduced nonsignificant attribute to created optimal dataset and can improve performance clustering and classification algorithm. Results of this research is clustering and principal feature selection give significant impact in accuracy and computation time for internet traffic classification. The combination from this three methods have successfully modeled to generate a data classification method of internet bandwidth usage.

Keywords Classification · Clustering · Feature · Internet · K-NN
7.1 Introduction

The purpose of this research is to investigate how to improve the K-Nearest Neighbor (K-NN) classification accuracy and computation time for internet bandwidth usage classification process. K-NN algorithm calculates all distances distribution of existing data, so the results of the classification are more accurate because it considers all the possibilities that exist, the process of rigorous computational algorithms K-NN finally have a weakness in terms of performance that is the slow process of classification.

In addressing the weakness of K-NN algorithm in this research, an experiment study has been conducted by firstly forming the ready-classified datasets, which is done by clustering beforehand. Clustering process is done so that the spread of the data occurs naturally based on similarity of existing data, as the data is scattered then carried out a process of classification, clustering process is expected to accelerate the performance of K-NN algorithm. This clustering algorithm is an algorithm that meets the Fuzzy C Mean. At Algorithm Fuzzy C Mean, number of clusters to be formed does not need to be determined in advance, so the number of clusters that formed later would show the grouping of data occurs. In a recent study in 2012 conducted by LOU Xiaojun, LI Junying, and Haitao LIU still stated that the Fuzzy C Mean generally have a weakness for the output partition/cluster for the same dataset [1].

Based on these previous research there are some opportunity to develop an Internet traffic classification model using machine learning algorithms. In this research K-NN algorithm is used for that classification, Fuzzy C Mean algorithm for clustering process and Principal Feature Selection for principal feature selection. One advantage of Fuzzy C-Mean algorithm is the number of classification does not need to be specified from the beginning such as in Fuzzy K Mean algorithm. It is expected that the classification is formed to represent real data. However Fuzzy C Mean requires a feature of selection for data to be used that Internet traffic with the same correlation could fit into the same classification. Another thing that could be the development on these studies is how the process of finding the features and precise fit.

7.2 Literature Review

7.2.1 K-Nearest Neighbor

Algorithm k-nearest neighbor (k-NN or KNN) is an algorithm used for the classification of the object based on the distance between the objects. The data used for the classification process in the K-NN projected into multiple dimensions, where each dimension represents the features of the data [2]. The space is divided into sections based on the classification of data that are classified. A point in this space marked class C if class C is the most common classification of the k nearest neighbors of the dot. Near or far neighbors Euclidean are usually calculated based
on the distance learning phase, the algorithm is simply to store the vectors of features and classification of the learning data. In the classification phase, the same features are calculated for test data (which classification is not known). The distance of this new vector of all learning data vector is calculated, and the number k closest is retrieved [3]. K-NN algorithm accuracy is greatly influenced by the presence or absence of features that are not relevant, or if the weight of such features is not equivalent to its relevance to the classification. Research on these algorithms largely discusses how to choose and give weight to the feature, in order to become a better classification performance.

7.2.2 Fuzzy C-Mean

Fuzzy C-Means clustering is a technique to clustering of each data point in dataset which determined by the degree of membership. This technique was first introduced by Jim Bezdek in 1981. First step of Fuzzy C-Means is to determine cluster centers, which marked the average location for each cluster. In the initial condition, the center of the cluster is still not accurate. Each data point has a degree of membership for each cluster. By improving the cluster centers and the degree of membership of each data point repeatedly, it will be seen that the center cluster will move towards the right location. This loop is based on minimization of an objective function that describes the distance from the given data point to the center of the cluster that is weighted by the degrees of membership of data points. Output of Fuzzy C-Means is a row of cluster centers and some degree of membership for each data point. First of all, the method provides membership values, which can be useful for assessing the validity of the cluster structure obtained. Second, the method has a simple and efficient algorithm which makes it applicable in a broad class of situations [4].

7.2.3 Principal Feature Selection

Principal Component Analysis (PCA) is the principal feature selection method used in this research. Esbensen [5], explained that the main component analysis (PCA) is a multivariate data analysis method mostly used for exploratory analysis of data, outlier detection, rank (dimension) reduction, graphical clustering, classification, and regression. The proper understanding of PCA is a prerequisite for the controlling other latent variable methods, including Principal Component Analysis regression, multivariate calibration and classification. Current use of PCA is associated with the latent data structure visualization with a graphical plot. Since PCA allows interpretation based on all variables simultaneously, then PCA is mostly used as the first data analysis conducted on multivariate data sets, although further data analysis with other methods even more advanced one may be required [6].
7.3 Research Methodology

The purpose of this study is to investigate the impact of clustering and principal feature selection for K-NN Classification accuracy and computation time by using Fuzzy C-Mean as clustering algorithm and Principal Component Analysis (PCA) as principal feature selection. PCA is first technique implement in this research for analyzing internet traffic dataset and to find the discriminant feature [7]. Fuzzy C-Mean is a technique for improving the K-NN computation time, Fuzzy C-Mean is the solution to help K-NN in data clustering, Fuzzy C-Mean will make the distribution and grouping of data so as to make the K-NN does not need to perform the calculation of all distances between existing data. The research methodology to achieve these research objectives, as shown in Fig. 7.1.

The contribution in this research shown in the blue box on Fig. 7.1. This research dataset is collecting from mooreset dataset which used in another internet traffic classification research, this data is collected from http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/ [8].

Fig. 7.1 Research methodology
7.4 Experimental Result

This research used dataset 10 for experimental dataset, the dataset class and number of flow is present in Table 7.1. The experimental result is present in Table 7.2 until Tables 7.3 and 7.4.

Table 7.1 shows that dataset 10 has a 65036. Fuzzy C-Mean clustering the data before classified by K-NN, Fuzzy C-Mean clustering is expected to improve the computation time of the algorithm K-NN. Principal Feature Selection done by PCA via transform the dataset into new dataset, the new dataset is create by dimensional reduction from PCA. Table 7.2 shown that Fuzzy C-Mean gave significant impact for K-NN Classification in execution time, K-NN execution time decreases almost 400 s. The feature reduction which done by PCA shows the most significant impact, Table 7.2 shown execution time improvement is more less 70 %, unfortunately

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW</td>
<td>54436</td>
</tr>
<tr>
<td>Mail</td>
<td>6592</td>
</tr>
<tr>
<td>FTP-control (fc)</td>
<td>81</td>
</tr>
<tr>
<td>FTP-pasv (fp)</td>
<td>257</td>
</tr>
<tr>
<td>Attack</td>
<td>446</td>
</tr>
<tr>
<td>P2p</td>
<td>624</td>
</tr>
<tr>
<td>Database (db)</td>
<td>1773</td>
</tr>
<tr>
<td>Ftp-data (fd)</td>
<td>592</td>
</tr>
<tr>
<td>Multimedia (mm)</td>
<td>0</td>
</tr>
<tr>
<td>Services (srv)</td>
<td>212</td>
</tr>
<tr>
<td>Interactive (int)</td>
<td>22</td>
</tr>
<tr>
<td>Games (gm)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>65036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Times (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional K-NN</td>
<td>1232</td>
</tr>
<tr>
<td>Traditional K-NN + Fuzzy C-Mean</td>
<td>839</td>
</tr>
<tr>
<td>Traditional K-NN + Fuzzy C-Mean + PCA</td>
<td>249</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional K-NN</td>
<td>98.41</td>
</tr>
<tr>
<td>Traditional K-NN + Fuzzy C-Mean</td>
<td>96.70</td>
</tr>
<tr>
<td>Traditional K-NN + Fuzzy C-Mean + PCA</td>
<td>98.06</td>
</tr>
</tbody>
</table>
K-NN classification accuracy is decline when Fuzzy C-Mean and PCA implement in classification model as shown in Table 7.3. In Table 7.4 also shown that Max Precision value is decline when Fuzzy C-Mean and PCA implement in this classification model.

7.5 Conclusion

K-NN has great accuracy in internet traffic classification. K-NN disadvantage is its high execution time. To improve the execution of K-NN algorithms needed to carry out the reduction features PCA and Fuzzy C-Mean algorithm to form a cluster prior to the classification process, with the combination of two algorithm. K-NN algorithm would have a shorter execution time and but unfortunately the classification accuracy declining. In the future, work will be conducted on how to figure out number of class in dataset and improving accuracy from K-NN but still have short execution time.

Acknowledgments We would like to thank to Indonesian Higher Education and Research for this opportunity and research grant, and also for University Of Ciputra for research facility.

References

Table 7.4 Classification summary

<table>
<thead>
<tr>
<th></th>
<th>Traditional K-NN</th>
<th>Traditional K-NN + Fuzzy C-Mean</th>
<th>Traditional K-NN + Fuzzy C-Mean + PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max precision value</td>
<td>99.77 %</td>
<td>99.09 %</td>
<td>99.60 %</td>
</tr>
<tr>
<td>Min precision value</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Number of class in dataset</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Number of class figure out in classification</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>