3

by Salmon Charles
Interaction of Mercury and Cadmium on Key Enzymes in Glycolysis in Silico enzymes in glycolysis were ob...

Some of the authors of this publication are also working on these related projects:

- [Metals Biosorption](#)
- [modelling protein](#)
Interaksi Merkuri dan Kadmium terhadap Enzim Kunci pada Glikolisis in Siliko

Eko Suhartono*, Noer Komari*, Salmon Charles Pardomuan Tua Siahaan*

1Departemen Biokimia dan Biomolekuler, Fakultas Kedokteran, Universitas Lambung Mangkurat, Banjarbaru
2Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lambung Mangkurat, Banjarbaru
3Fakultas Kedokteran, Universitas Ciputra, Surabaya
4e-mail: ekantioxidant@gmail.com

Abstrak

Glikolisis merupakan proses oksidasi glukosa yang melibatkan enzim hingga menghasilkan asam piruvat dalam kondisi aerob serta asam laktat dalam keadaan anaerob. Enzim-enzim yang terlibat di dalam glikolisis dapat berinteraksi dengan logam berat, melalui pengikatan secara kovalen terhadap residu asam amino dari enzim. Untuk membuktikan hal tersebut, digunakan metode in siliko dengan menggunakan MIB: Metal Ion-Binding site prediction and server docking dari Lu Lab@StructuralBioinformatics, China Medical University (http://bioinfo.cmu.edu.tw/MIB/). Enzim-enzim kunci pada glikolisis diperoleh dari RCSB Protein Data Bank (https://www.rcsb.org/search), yakni enzim glukokinase dengan kode PDB: 3FGU, enzim heksokinase dengan kode PDB: 4IJC, dan enzim piruvat kinase dengan kode PDB: 1ZJH. Protein disiapkan dengan menghilangkan residu ligan alami yang ada dalam protein. Persiapan ligan dan protein digunakan oleh program Chimera 1.15. Hasil penelitian mengungkapkan bahwa interaksi Hg terhadap enzim glukokinase, heksokinase, dan enzim piruvat kinase lebih reaktif dibanding Cd. Pada glikolisis, Cd banyak berinteraksi dengan residu asam glutamat dan residu histidine sedangkan Hg banyak berinteraksi dengan sistein pada enzim-enzim glikolisis. Pembentukan kompleks Hg dengan residu sistein, menyebabkan Hg akan berikatan dengan gugus thiol bebas yang tersedia. Merkuri yang terikat pada gugus thiol pada residu sistein mengakibatkan fungsi residu sistein pada protein tidak berjalan dengan semestinya sehingga enzim tidak aktif dan glikolisis terganggu.

Kata kunci: glikolisis, heksokinase, glukokinase, piruvat kinase, logam berat

Interaction of Mercury and Cadmium on Key Enzymes in Glycolysis in Silico

Abstract

Glycolysis is a glucose oxidation process that involves enzymes to produce pyruvic acid under aerobic conditions and lactic acid under anaerobic conditions. The enzymes involved in glycolysis can interact with heavy metals, by covalent binding to the amino acid residues of the enzymes. To prove this, an in silico method was used using MIB: Metal Ion-Binding site prediction and server docking from Lu Lab@StructuralBioinformatics, China Medical University (http://bioinfo.cmu.edu.tw/MIB/). Key enzymes in glycolysis were obtained from the RCSB Protein Data Bank (https://www.rcsb.org/search), namely glukokinase enzyme with PDB code: 3FGU, hexokinase enzyme with PDB code: 4IJC, and pyruvate kinase enzyme with PDB code: 1ZJH.
Interaksi Merkuri dan Kadmium terhadap Enzim Kunci pada Glikolisis in Siliko
Eko Suhartono, Noer Komari, Salmon Charlesarduan Tua Siahaan

129H. Proteins are prepared by removing the natural ligand residues present in the protein. Ligand and protein preparations were used by the Chimera 1.15 program. The results revealed that the interaction of Hg with glucokinase, hexokinase, and pyruvate kinase enzymes was more reactive than Cd. In glycolysis, Cd interacts a lot with glutamic acid residues and histidine residues, while Hg interacts with cysteine in glycolysis enzymes. The formation of the Hg complex with the cysteine residue causes the Hg to bond to the available free thiol group. Mercury bound to the thiol group on the cysteine residue causes the function of the cysteine residue on the protein to not work properly so that the enzyme is not active and glycolysis is disrupted.

Keywords: glycolysis, hexokinase, glucokinase, pyruvate kinase, heavy metals

PENDAHULUAN

Merkuri (Hg) merupakan logam berat yang memiliki nomor atom 80 dan terletak pada golongan 12, periode 6 pada sistem periodik. Sementara itu, kadmium (Cd) adalah logam berat bernomer atom 48, terletak pada golongan 12, periode 5 pada sistem periodik. Kedua logam tersebut banyak dimanfaatkan untuk keperluan industri, misalnya merkuri digunakan untuk pembuatan temperature air raksa, bahan dasar pembuatan amalgam gigi, bahan fingisida, dan lain-lain. Kadmium juga digunakan pada industri baterai, bahan pembuatan zat warna, electroplating, dan lain sebagainya.

Selain bermanfaat, buangan industri yang mengandung Hg dan Cd dapat masuk ke dalam lingkungan. Pada konsentrasi tertentu, buangan tersebut akan berubah fungsi menjadi sumber racun bagi manusia dan lingkungan. Sifat racun Hg dan Cd bagi manusia diawali dari masuknya kedua logam tersebut melalui, air, bahan makanan, maupun pernafasan. Selanjutnya, Hg dan Cd dimetabolisme melalui metabolisme xenobiotik. Metabolisme ini akan mengubah senyawaan Hg dan Cd yang larut lemak menjadi senyawa larut air, yang selanjutnya diekskresi melalui ginjal.

Metabolisme xenobiotik Hg dan Cd akan menghasilkan metabolit non toksik yang akan diekskresi dan metabolit yang reaktif. Metabolit reaktif dari Hg dan Cd mampu berikatan secara kovalen dengan berbagai ligan, misalnya -OH, -COO-, -OPO₃H₂, -C=O, -SH, -S-S-, -NH₂ dan -NH₃ yang banyak terdapat pada asam-asam amino penyusun protein maupun enzim (Suhartono et al, 2015). Ikatan Hg dan Cd dengan ligan-igan tersebut akan menghambat aktivitas enzim glikolisis misalnya heksokinase, glucokinase, dan piruvat kinase sehingga terjadi pembentukan ATP terganggu.

Heksokinase tergolong enzim transferase dan enzim pertama dalam jalur glikolisis. Enzim ini mengubah glukosa menjadi glukosa-6-fosfat. Hasil penelitian

Selain heksokinase dan glucokinase, enzim piruvat kinase merupakan enzim penting dalam glikolisis. Piruvat kinase adalah apoenzim yang mengkatalisis langkah terakhir dari proses seluler degradasi glukosa (glikolisis). Fungsinya untuk mempercepat transfer gugus fosfat dari fosfoenolpiruvat ke adenosin difosfat, menghasilkan satu molekul piruvat dan satu dari ATP. Piruvat kinase memiliki 4 bentuk berbeda (isoenzim) dalam jaringan hewan yang berbeda, yang masing-masing memiliki sifat kinetik tertentu yang diperlukan untuk beradaptasi dengan kebutuhan metabolisme jaringan ini. Hingga saat ini, penelitian interaksi logam berat dengan piruvat kinase belum dilakukan.

Pada jalur glikolisis, enzim heksokinase, glucokinase, dan piruvat kinase merupakan enzim penting. Belum banyak penelitian yang mengungkap interaksi logam berat Hg dan Cd terhadap residu enzim-enzim glikolisis. Oleh karena itu, pada penelitian ini, akan menjelaskan interaksi Hg dan Cd terhadap enzim heksokinase, glucokinase, dan piruvat kinase secara in siliko.

BAHAN DAN METODE

Persiapan ligan dan protein
Ligan Cd dan Hg dilakukan menggunakan MIB: Metal Ion-Binding site prediction dan server docking dari Lu Lab@StructuralBioinformatics, China Medical University http://bioinmfo.cmu.edu.tw/MIB/ (Lin et al, 2016; Sharma et al, 2019). Enzim-enzim kunci pada glikolisis diperoleh dari RCSB Protein Data Bank https://www.rcsb.org/search, yakni enzim glucokinase dengan kode PDB: 3FGU (Adelina, 2020), enzim heksokinase dengan kode PDB: 4IXC (Ziamajidi et al, 2015), dan enzim piruvat kinase dengan kode PDB: 1ZJH (Shabir et al, 2019). Protein disiapkan
Interaksi Merkuri dan Kadmium terhadap Enzim Kunci pada Glikolisis in Siliko
Eko Suhartono, Noer Komari, Salmon Charles Pardamuan Tua Siahaan

Analisis dan visualisasi

HASIL

Berdasarkan hasil docking MIB, interaksi antara logam Cd dengan enzim glikokinase, heksokinase, dan enzim piruvat kinase dapat dilihat pada tabel 1.

| Tabel 1. Interaksi Cd terhadap enzim glikokinase, heksokinase, dan enzim piruvat kinase |
|---|-----------------|-----------------|
| Enzim | Residu Asam Amino | Jarak ikatan (Å) | Interaksi |
|---|-----------------|-----------------|
| Glikokinase (Kode PDB: 3FGU) | Cd-17Glu | 2,558 | Ikatan kovalen kordinasi |
| Glikokinase (Kode PDB: 3FGU) | Cd-18Glu | 2,425 | Ikatan kovalen kordinasi |
| Heksokinase (Kode PDB: 4IXC) | Cd-368Glu | 2,427 | Ikatan kovalen kordinasi |
| Heksokinase (Kode PDB: 4IXC) | Cd-327His | 2,179 | Ikatan kovalen kordinasi |
| Piruvat Kinase (Kode PDB: 1ZJH) | Cd-438His | 2,337 | Ikatan kovalen kordinasi |
| Piruvat Kinase (Kode PDB: 1ZJH) | Cd-463His | 2,295 | Ikatan kovalen kordinasi |

Secara umum, Cd banyak berinteraksi logam Cd dengan enzim glikokinase, dengan residu asam glutamate dan residu histidine. Sementara itu, interaksi antara logam Cd dengan enzim heksokinase, dan enzim piruvat kinase dapat dilihat pada gambar 1.

Gambar 1. Pengikatan secara kovalen kordinasi antara Cd dengan residu asam amino (a) Glikokinase-Cd (b) Heksokinase-Cd, dan (c) Piruvat Kinase-Cd
Berbeda dengan Cd, interaksi Hg melibatkan residu asam amino. Hal ini dapat dilihat pada Tabel 2.

Tabel 2. Interaksi Hg terhadap enzim glucokinase, heksokinase, dan enzim piruvat kinase lebih banyak

<table>
<thead>
<tr>
<th>Enzim</th>
<th>Residu Asam Amino</th>
<th>Jarak ikatan (Å)</th>
<th>Interaksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukokinase (kode PDB: 3FGU)</td>
<td>Hg-146Cys</td>
<td>2,506</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-149Cys</td>
<td>2,601</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-169Cys</td>
<td>2,558</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-174Cys</td>
<td>2,544</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td>Heksokinase (kode PDB: 4I1C)</td>
<td>Hg-231Cys</td>
<td>2,306</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-228Ser</td>
<td>2,420</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td>Piruvat Kinase (kode PDB: 12I1)</td>
<td>Hg-324Ser</td>
<td>2,421</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-325Cys</td>
<td>2,306</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-357Cys</td>
<td>2,266</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
<tr>
<td></td>
<td>Hg-362Ser</td>
<td>2,349</td>
<td>Ikatan kovalen kordinasi</td>
</tr>
</tbody>
</table>

Secara umum, residu sistein banyak berinteraksi terhadap Hg pada enzim-enzim glikolisis. Visualisasi interaksi antara logam Cd dengan enzim glucokinase, heksokinase, dan enzim piruvat kinase dapat dilihat pada gambar 2.

Gambar 2. Pengikatan secara kovalen kordinasi antara Cd dengan residu asam amino (a) Glukokinase-Cd (b) Heksokinase-Cd, dan (c) Piruvat Kinase-Cd

PEMBAHASAN

Glikolisis adalah jalur pemecahan glukosa menjadi piruvat dalam keadaan aerob atau asam laktat dalam keadaan anaerob. Glikolisis juga menyediakan substrat untuk produksi energi melalui pembentukan ATP serta substrat untuk jalur penyimpanan glikogenesis dan lipogenesis. Glikolisis diatur pada beberapa langkah pembatas laju seperti penyerapan glukosa, fosforilasi glukosa, dan/atau konversi fruktosa-6-fosfat (F6P) menjadi fruktosa-1,6-bifosfat (F1,6P2). Dengan demikian, transporter glukosa-4 (GLUT4), glukokinase (GK), dan 6-fosfofructo-1-kinase (6PFK1) adalah penting dalam pengaturan laju...
Interaksi Merkuri dan Kadmium terhadap Enzim Kunci pada Glikolisis in Silico
Eko Subartono, Noer Komari, Salmon Charles Pardamuan Tua Siahaan

Gambar 3. Metabolisme glukosa melalui jalur glikolisis aerob

Ditinjau dari tabel 1 dan 2 terlihat bahwa interaksi Hg terhadap enzim glucokinase, heksokinase, dan enzim piruvat kinase lebih reaktif dibanding Cd. Hal ini dapat dijelaskan bahwa jari-jari Hg lebih besar daripada Cd, sehingga Hg memiliki kemampuan untuk melepaskan elektron yang lebih besar dibanding Cd. Pelepasan electron ini menyebabkan Hg lebih mudah berinteraksi dibandingkan Cd. Hal ini ditandai oleh banyaknya residu asam amino yang mengikat Hg dibanding Cd. Banyaknya residu asam amino yang berikatan menunjukkan adanya sifat metal chelating enzim-enzim glikolisis (gambar 1 dan gambar 2).
Pada tabel 2, tampak bahwa Hg secara umum diikat oleh sistein, karena Hg-Sistein memiliki konstanta kestabilan yang tinggi. Pembentukan kompleks Hg dengan residu sistein, menyebabkan Hg akan berikatan dengan gugus thiol bebas yang tersedia. Merkuri yang terikat pada gugus thiol pada residu sistein mengakibatkan fungsi residu sistein pada protein tidak berjalan dengan semestinya. Gugus thiol merupakan gugus aktif dari kebanyakan enzim. Adanya Hg menyebabkan enzim tidak aktif sehingga aktifnya tidak berfungsi lagi.

KESIMPULAN

Berdasarkan hasil penelitian disimpulkan bahwa Secara umum, Hg dan Cd dapat berinteraksi dengan residu asam amino pada enzim heksokinase, glukokinase, maupun piruvat kinase, tetapi Hg lebih reaktif dibandingkan Cd. Pada glikolisis, Cd banyak berinteraksi dengan residu asam glutamate dan residu histidine sedangkan Hg banyak berinteraksi dengan sistein pada enzim-enzim glikolisis. Dengan demikian, Hg dan Cd diprediksi dapat menghambat glikolisis.

DAFTAR PUSTAKA

Originality Report

<table>
<thead>
<tr>
<th></th>
<th>Similarity Index</th>
<th>Internet Sources</th>
<th>Publications</th>
<th>Student Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16%</td>
<td>16%</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Primary Sources

1. **scholar.google.co.id**
 - Internet Source
 - 3%

2. **ml.scribd.com**
 - Internet Source
 - 3%

3. **apayangdimaksud.com**
 - Internet Source
 - 2%

4. **erepository.uwks.ac.id**
 - Internet Source
 - 2%

5. **garuda.kemdikbud.go.id**
 - Internet Source
 - 2%

6. **id.scribd.com**
 - Internet Source
 - 2%

7. **fjfsdata01prod.blob.core.windows.net**
 - Internet Source
 - 2%

Exclude quotes: Off
Exclude bibliography: Off
Exclude matches: < 2%