• Login
    View Item 
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Implementation of Support Vector Machine Classification for Developer Academy Acceptance Prediction Model

    Thumbnail
    View/Open
    Abstract (155.2Kb)
    Cover, TOC, Content (533.1Kb)
    Plagiarism (1.957Mb)
    Date
    2021
    Author
    Wiradinata, Trianggoro
    Soekamto, Yosua Setyawan
    Tanamal, Rinabi
    Saputri, Theresia Ratih Dewi
    Metadata
    Show full item record
    Abstract
    In order to prepare graduates with work readiness in the IT industry, specifically in mobile apps development, one of its ways is to create a Developer Academy where final year students are prepared in an intensive program for two consecutive semesters to learn the stages of mobile apps development. To ensure the quality of participants in the Developer Academy, a set of selection procedures needs to be prepared, consisting of Aptitude Test, Portfolio Showcase, and Individual Interview. The problem arises when applicants are far more than the class capacity. Hence selection procedures take a longer time. The Developer Academy registration team record showed a ratio of 1:12, which overburdens the team when it comes to selecting the applicants. More effective procedures are needed with the help of machine learning tools to help with decision making. This study aims to produce a prediction model for developer academy applicants. Several classification algorithms such as k-nearest neighbors, support vector machine, decision tree, and random forest were analyzed. Data was collected from 527 valid applicant's data which submit complete documents based on due date, other applicants who did not submit complete documents were not included in the analysis. Preliminary findings from the study show that the Support Vector Machine algorithm performs best with an accuracy of 86% and this score was then increased by applying oversampling and kernel tricks to get an accuracy rate of 98%. Hence it can be concluded that the prediction model has excellent performance
    URI
    http://dspace.uc.ac.id/handle/123456789/5390
    Collections
    • Lecture Papers International Published Articles

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire