• Login
    View Item 
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Post-Pandemic Analysis of House Price Prediction in Surabaya: A Machine Learning Approach

    Thumbnail
    View/Open
    Abstract (113.6Kb)
    Cover, TOC, Content (1.613Mb)
    Plagiarism (3.257Mb)
    Bukti Korespondensi Jurnal Prasyarat (465.5Kb)
    Date
    2022
    Author
    Wiradinata, Trianggoro
    Graciella, Felicia
    Tanamal, Rinabi
    Soekamto, Yosua Setyawan
    Saputri, Theresia Ratih Dewi
    Metadata
    Show full item record
    Abstract
    The COVID-19 outbreak caused a slowdown in the Indonesian economy, as it did in many other impacted nations. Consequently, the housing market in Indonesia, along with other industries, deteriorated. Other post-pandemic issues displace the property industry's priorities in Indonesia. Determining a fair property price is a problem occurring because of the economic slowdown. Property sellers expected their property selling prices to be the same before the pandemic or even increase, but property agents hoped the properties would be selling fast, creating a sense of distrust between the seller and the property agents. This work aims to develop a machine learning-based prediction model for real estate agents to use in determining property prices, with the expectation that the resulting predictions will be more accurate and supported by the data, increasing seller and buyer confidence. Following the suggestion from previous studies, several supervised algorithms such as Linear Regression, Decision Tree, and Random Forest were used to develop the model. Training data were collected from five property agents in Surabaya and as well as web scraping from the online home sales portals. Findings from the study show that Random Forest performs best in predicting with the highest coefficient of determination and lowest error. Using evaluation measures such as Mean Absolute Percent Error (MAPE), the error was calculated to be 23%, which is acceptable for prediction.
    URI
    http://dspace.uc.ac.id/handle/123456789/5519
    Collections
    • Lecture Papers International Published Articles

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire