• Login
    View Item 
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    •   DSpace Home
    • Lecture Papers
    • Lecture Papers International Published Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application

    Thumbnail
    View/Open
    Abstract (54.19Kb)
    Cover, TOC, Content (467.9Kb)
    Plagiarism (3.773Mb)
    Date
    2022
    Author
    Prilianti, Kestrilia Rega
    Anam, Syaiful
    Suryanto, Agus
    Brotosudarmo, Tatas Hardo Panintingjati
    Metadata
    Show full item record
    Abstract
    The assessment of the photosynthetic pigment contents in plants is a common procedure in agricultural studies and can describe plant conditions, such as their nutritional status, response to environmental changes, senescence, disease status and so forth. In this report, we show how the photosynthetic pigment contents in plant leaves can be predicted non-destructively and in real-time with an artificial intelligence approach. Using a convolutional neural network (CNN) model that was embedded in an Androidbased mobile application, a digital image of a leaf was processed to predict the three main photosynthetic pigment contents: chlorophyll, carotenoid and anthocyanin. The data representation, low sample size handling and developmental strategies of the best CNN model are discussed in this report. Our CNN model, photosynthetic pigment prediction network (P3Net), could accurately predict the chlorophyll, carotenoid and anthocyanin contents simultaneously. The prediction error for anthocyanin was ±2.93 mg/g (in the range of 0-345.45 mg/g), that for carotenoid was ±2.14 mg/g (in the range of 0-211.30 mg/g) and that for chlorophyll was ±5.75 mg/g (in the range of 0-892.25 mg/g). This is a promising result as a baseline for the future development of IoT smart devices in precision agriculture.
    URI
    http://dspace.uc.ac.id/handle/123456789/5856
    Collections
    • Lecture Papers International Published Articles

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Copyright©  2017 - LPPM & Library Of Universitas Ciputra
    »»» UC Town CitraLand, Surabaya - Indonesia 60219 «««
    Powered by : FreeBSD | DSpace | Atmire