Show simple item record

dc.contributor.authorPrilianti, Kestrilia Rega
dc.contributor.authorAnam, Syaiful
dc.contributor.authorSuryanto, Agus
dc.contributor.authorBrotosudarmo, Tatas Hardo Panintingjati
dc.date.accessioned2023-02-06T02:26:56Z
dc.date.available2023-02-06T02:26:56Z
dc.date.issued2022
dc.identifier.issn2239-6268
dc.identifier.urihttp://dspace.uc.ac.id/handle/123456789/5856
dc.description.abstractThe assessment of the photosynthetic pigment contents in plants is a common procedure in agricultural studies and can describe plant conditions, such as their nutritional status, response to environmental changes, senescence, disease status and so forth. In this report, we show how the photosynthetic pigment contents in plant leaves can be predicted non-destructively and in real-time with an artificial intelligence approach. Using a convolutional neural network (CNN) model that was embedded in an Androidbased mobile application, a digital image of a leaf was processed to predict the three main photosynthetic pigment contents: chlorophyll, carotenoid and anthocyanin. The data representation, low sample size handling and developmental strategies of the best CNN model are discussed in this report. Our CNN model, photosynthetic pigment prediction network (P3Net), could accurately predict the chlorophyll, carotenoid and anthocyanin contents simultaneously. The prediction error for anthocyanin was ±2.93 mg/g (in the range of 0-345.45 mg/g), that for carotenoid was ±2.14 mg/g (in the range of 0-211.30 mg/g) and that for chlorophyll was ±5.75 mg/g (in the range of 0-892.25 mg/g). This is a promising result as a baseline for the future development of IoT smart devices in precision agriculture.en_US
dc.publisherJournal of Agricultural Engineeringen_US
dc.subjectArtificial intelligence; convolutional neural network; digital image; mobile application; non-destructive method; photosynthetic pigments.en_US
dc.titleReal-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile applicationen_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record